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Abstract

We define the convexity rank of a set of points to be the portion of mutually visible pairs of points out of the total
number of pairs. Based on this definition of weak convexity, we introduce a spectral method that decomposes a
given shape into weakly convex regions. The decomposition is applied without explicitly measuring the convexity
rank. The method merely amounts to a spectral clustering of a matrix representing the all-pairs line of sight. Our
method can be directly applied on an oriented point cloud and does not require any topological information, nor
explicit concavity or convexity measures. We demonstrate the efficiency of our algorithm on a large number of
examples and compare them qualitatively with competitive approaches.

1. Introduction

High-level analysis of shapes has been receiving much at-
tention recently. The general effort is to learn structural and
semantic shape information from the low-level shape geo-
metric properties (e.g., [FCODS08] [MYY∗10] [WXL∗11]).
A fundamental problem in shape analysis is shape segmen-
tation [Sha08]. Although the problem received a lot of atten-
tion recently (e.g., [GF08] [HKG11] [KHS10] [ZZWC12])
the problem remains challenging. Moreover, most of these
methods assume complete and watertight shapes, repre-
sented by a triangular mesh.

A closely related problem to shape segmentation is the
problem of convex decomposition. The two problems are
related by the "minima rule" that states that humans per-
ceive parts as being separated by lines of minimum curva-
ture [HR84], which implies that a shape can be seen as be-
ing composed of approximately convex parts. This obser-
vation motivated the problem of approximate convex de-
composition of shapes as means for meaningful segmenta-
tion of other related problems [KJS07] [LA07] [AMSF08]
[RYLL11].

In this work we introduce a conceptually simple means
for decomposing a shape into approximately convex parts.
We define a set of points to be in a weakly convex position
if most of its subsets are in a convex position, and define the
convexity rank of a set of points to be the portion of mutu-
ally visible pairs of points out of the total number of pairs.
Based on this definition, we compute the binary visibility of

all pairs of points and apply spectral clustering to yield the
weakly convex decomposition. Our method avoids any com-
plex geometric operations that measure concavity/convexity
of regions or parts. It is directly drawn from the fundamental
definition of convexity which implies that a region is con-
vex if all pairs of points in that region have an inner line-
of-sight. Consequently, loosely speaking, we seek a decom-
position into regions which maximizes the convexity rank
of its regions, without explicitly measuring convexities or
concavities by complex geometric algorithms. Aside for its
simplicity, a unique advantage of our method is that it can
be applied on an incomplete shape, with large missing parts,
possibly represented as a point cloud (see Figure 1).

2. Related Work

The convex decomposition of a shape can be useful as
means of breaking a hard problem into a set of simpli-
fied problems; a complex geometry into an assembly of
simple parts. However, an exact convex decomposition is
NP-hard [?] and overly strict and conservative to be use-
ful for common shapes. Approximate convex decomposi-
tion [LA07] [AMSF08] [RYLL11] is more effective since
common shapes consist of an assembly of parts which are
not strictly convex. Clearly, approximate convex decompo-
sition is easier to compute than an exact one.

Yet, an approximate convex decomposition is not an easy
task, and often hard to control. Kraevoy and Sheffer [KJS07]
use a greedy region growing approach, where the distance
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Figure 1: An approximate convex decomposition applied on
an incomplete point cloud.

between the growing surface part and its convex hull serves
as the stopping criterion. The approach taken by Lien and
Amato [LA07] is based on iteratively identifying concave
regions which guide the partitioning of the object into finer
parts. Through the elimination of these concavities the re-
sulting parts are more convex. These methods are hard
to control and often generate redundant parts. Ren et al.
[RYLL11] improve the decomposition by an optimization
process that minimizes the number of parts.

A different strategy for an approximate convex decom-
position is introduced by Attene et al. [AMSF08]. They as-
sume that the shape has been decomposed into a tetrahedral
mesh, where each tetrahedron is convex by definition. In a
bottom up scheme they aggregate tetrahedra into a hierar-
chy of approximate convex polyhedra. The strength of their
approach stems from the fact that unlike the above methods
which consider the surface only, here they treat the convex-
ity problem by considering the volume. The method that we
present here considers the volume for computing the con-
vex decomposition, however its complexity is defined by the
number of surface point pairs for which we compute mutual
visibility.

All methods for convex decomposition consider as in-
put a complete watertight mesh. This limits their applica-
bility to analyze shapes that were already consolidated, re-
constructed or properly modeled. There is, of course, an in-
terest and need in methods that analyze imperfect shapes.
For example, in [TZCO09] the medial skeleton of a shape
is computed from a rather incomplete point cloud. Lipman
et al. [LCDF10] analyze the symmetry of a shape, possibly
incomplete, represented by a point cloud. Analyzing point
clouds requires using techniques which do not rely on com-
mon surface-based tools like geodesic paths or the Laplace
operator. Our method is based solely on the visibility of

pairs of points, without considering any notion related to sur-
faces, thus allowing the convex analysis of incomplete point
clouds.

Other work on shape segmentation, rather than convex de-
composition, also have strong relation to our own work. Liu
and Zhang [?] present a segmentation method based on spec-
tral clustering as is our method. However, their affinity ma-
trix is based on local surface properties, where ours is based
on visibility, which is a global volumetric property. Shapira
et al. [?] and Liu et al. [?] both use visibility to segment
a shape, but they do so by reducing it to a function of the
surface, rather than using it directly for clustering of the vol-
ume.

3. Weak Convexity

The convex decomposition method that we present is built
upon a new definition of weak convexity which is based on a
computation of inner visibility between points on the surface
of the shape. Two points on the surface of a shape are mutu-
ally visible and are said to be in a line-of-sight (LoS), if the
straight line-segment between them does not leave the inner
volume of the shape. A point is always said to be in LoS with
itself. Two surface points or any clique of points that are in
LoS are also said to be in a convex position. Note that the
visibility is not computed for the continuous surface of the
shape, but rather on a uniformly-sampled finite set of surface
points.We denote the set of sampled surface points by S; we
denote the LoS set of mutually visible pairs by LoS(S).

We define LoS(A) as the set of all pairs of points in A⊆ S
that are in a line-of-sight; that is, (i, j) ∈ LoS(A) if and only
if the surface points i∈ A and j ∈ A are mutually visible. For
two subsets of surface points A,B ⊆ S we denote LoS(A,B)
to be the set of pairs (i, j), i ∈ A, j ∈ B which are mutually
visible. Notice that this definition does not imply any as-
sumptions about the shape; the shape might be incomplete,
not watertight, noisy, and may actually be consisted of sev-
eral geometrically separated shapes. However, to compute
the LoS, we assume that the surface orientation (the in/out
direction) is known at each point (more details in Section 6).

Figure 2 illustrates the concept of line-of-sight. It is clear
how lines of sight relate to the property of convexity. As can
be seen, the points that are in LoS with any specific point
must not all be on a continuous portion of the surface. Note
that our definition of weakly convex regions is identical for
both 2D and 3D (see Figure 3).

Our method searches for clusters of surface points that are
mutually visible, meaning that they are in a convex position
with respect to each other. When the points in such a cluster
are also geometrically connected (forming a continuous sur-
face), they define the convex envelope of a partial volume of
the shape. We call a cluster in which all pairs of points are in
a convex position, a perfectly convex cluster.

Decomposing a shape into clusters of perfectly mutually
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Figure 2: The regions in green have a line-of-sight with the
marked point, while the blue regions do not.

Figure 3: Our method handles 2D and 3D objects under
a unified framework. Both 2D and 3D shapes are clustered
automatically into six clusters: five fingers and palm.

visible points is directly related to the clique cover problem,
which is NP-hard. Also, a decomposition to perfectly convex
clusters results (for most non trivial shapes) in a very large
number of clusters, where each cluster has no clear meaning
to the human perception. We aim to decompose shapes into
few weakly (approximately) convex segments where each
segment is more likely to be a meaningful and coherent part
of the shape. To accomplish this, we define the convexity
rank of a set of points to be the portion of mutually visible
pairs of points out of the total number of pairs:

CR(A) =
|LoS(A)|(|A|

2

) , (1)

where A is a subset of |A| points from S, and |LoS(A)| is the
number of mutually visible pairs in A.

Note that our weak convexity measure equally holds for
2D and 3D. Furthermore, its definition is fairly simple in
contrast to alternative measures (e.g., [Kar10]), and it avoids
computing convex hulls to estimate convexity (more in Sec-
tion 6). Moreover, in convex hull based methods, the com-
putation of the convex hull itself is performed for each de-
composition solution examined; while visibility is calculated
only once for the entire shape. Figure 4 demonstrates con-
vexity rank associated with various shapes. It can be noticed
that the convexity rank is intuitive, and can easily be inter-
preted visually.

4. Spectral Convex Decomposition

The problem of convex decomposition can now be formu-
lated using the definition of weak convexity rank. For a given

Figure 4: The convexity rank associated with various
shapes.

number of clusters k, we wish to find a partitioning of the
data for which each cluster has a high convexity rank and
the visibility between clusters is low. In other words, we aim
at a high intra-cluster number of LoS pairs and a low inter-
cluster number of such pairs. This can be formulated by a
minimization of the normalized cut (Ncut) functional:

S1, ...,Sk = argmin
k

∑
i=1

|LoS(Si,Si)|
|LoS(Si,S)|

, (2)

where Si is the complement of Si and S is the entire shape.
The Ncut problem is NP-complete and a known approxi-
mation is the solution of the spectral clustering algorithm
[SM00]. Figure 5 illustrates the convex decomposition of
two shapes. The convexity rank of the original shapes is low,
but our decomposition process successfully decomposes the
shapes into approximately convex parts, which are also se-
mantically meaningful. Note that the LoS relation is rela-
tively low between different clusters.

Figure 5: Two shapes with a low convexity rank (denoted
by CR(S)) are decomposed into three regions with higher
convexity ranks. The average of the ranks are denoted by
ĈR(Si). Note that the shape on the right is decomposed into
three strictly convex parts, while the shape on the left into
three weakly convex regions.

The spectral clustering algorithm takes as input an affin-
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ity matrix An×n, that describes the similarity relations be-
tween n objects, and a parameter k; it outputs a clustering of
the objects into k clusters. Each entry in the affinity matrix
specifies how similar two objects are to each other; when
Ai, j = 0 the objects i and j are considered not similar at all,
and higher values of Ai, j indicate greater similarity.

The algorithm then requires normalizing the affinity ma-
trix. Two methods of normalization are common: Laplacian
and stochastic. In the Laplacian formulation the normaliza-
tion is:

W = I−∆
−1/2A∆

−1/2,

In the stochastic formulation each row is normalized to sum
to 1:

W = ∆
−1A,

where ∆ is the diagonal degree matrix in both cases.

Determining the clustering is then achieved in two steps.
First, eigen-analysis of the normalized affinity matrix W
is performed and each object is assigned coordinates in a
spectral space created using the eigenvectors. Then, a spa-
tial clustering algorithm, such as K-means, is applied in the
spectral space resulting in a k-way clustering of the objects.

The rational behind this process is that groups of objects
that are all mutually similar will be located next to each
other in the spectral space. [MS01] have shown the relation
of spectral clustering to a random walk process on a graph.

In our method we define a binary affinity matrix M as
follows:

Mi, j =

{
1 (i, j) ∈ LoS(S)
0 otherwise

(3)

Hence we refer to M as the LoS matrix, and it acts as an affin-
ity matrix in the sense that surface points that are visible to
each other are likely to belong to the same convex segment,
and can thus be interpreted as similar. Furthermore, accord-
ing to [NLCK05], distances in the embedded space highly
correspond to mean exit time between clusters; in our set-
ting, a cluster is an approximately convex segment, and an
exit from that segment occurs when the random walk pro-
cess hits a line-of-sight that leads to a surface point outside
that segment. Figure 6 illustrates the interpretation of lines-
of-sight as a random walk within convex segments.

Figure 7 illustrates the LoS matrix, the spectral space and
the clustering result. We do not pose any guarantees on the
approximation to the optimal solution, but our empirical re-
sults are visually satisfactory and have high average convex
ranks.

Note, that the spectral clustering
does not guarantee that the result-
ing segments are continuous; this is
perfectly reasonable since our defi-
nition and measure of weak convex-

Figure 6: Most lines-of-sight are within a convex segment
(green lines). Lines-of-sight that lead to another segment,
also called an exit, are less common (red line). Therefore,
a random walk along lines-of-sight is more likely to remain
within a convex segment.

Figure 7: (a) A shape of 200 surface points decomposed to
two convex segments. (b) The LoS Matrix sorted by clusters
(black = visible LoS). (c) The distance matrix of points in the
spectral space (black = short distance); illustrating that the
distance between points in the spectral space highly corre-
spond to the likelihood of belonging to the same convex seg-
ment. Notice that the concave bottleneck areas correspond
to the “noisy” points in the LoS and distance matrices.

ity does not incorporate any infor-
mation about continuous connectivity,
but only about lines-of-sight which are not limited to the sur-
face at all.

5. Implementation

A notable feature of our method is that it does not have
strong requirements from the input shape. All that is required
is a scheme for testing visibility between a pair of points. If
the shape is represented by a triangular mesh then the LoS
is no more than a common ray-surface intersection test. To
accelerate this ray casting test we employ a voxel grid to sub-
divide the space. If the shape is represented by a point cloud
we use splats to represent the points. Our splats are realized
by triangles centered on the original points with an orien-
tation that agrees with the normal direction associated with
these points (see Figure 8). The size of a splat is approxi-
mated by the local density of the point cloud. However, the
cloud of splats does not form a coherent surface and the ray-
shape intersection test yields a noisy all-pair matrix M con-
taining both false-positive and false-negative entries. Nev-
ertheless, when the level of noise is moderate, the spectral
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analysis is robust enough to reduce the sensitivity to noise
and yield reasonable results (see Figure 9(a)). The density
and uniformity of faces or splats is also important. Empiri-
cally, shapes with over 2000 triangles or points prove to be
sufficiently dense and uniform for the success of our method.
Simplified meshes with under 2000 triangles are a priori up-
sampled uniformly to 3000 triangles.

The spectral convex decomposition method is also oblivi-
ous to the completeness of the shape and it can handle shapes
with large missing parts (see Figure 9(b,c)). The robustness
to missing parts is a direct implication of the fact that our
definition of weak convexity considers a set of points and
not a watertight surface or a continuous surface in general.

Figure 8: a) Point cloud with approximate surface orien-
tation. (b) Splat cloud constructed from the point cloud. (c)
Zooming into a portion of the splat cloud. Notice that the
splat cloud has gaps where the density of the point cloud is
low or completely missing.

Figure 9: a) Full splatted point decomposition. (b) Partial
point cloud splatted and decomposed. (c) Same decomposed
partial model from acquisition point of view.

Computation of all the entries of an LoS matrix for a large
model is extremely time consuming and thus impractical,
with a complexity of O(N2logN), where N is the number of
faces or splats. Therefore, instead of calculating and using
a full LoS matrix, we use a sparsely sub-sampled LoS. The
sub-sampled LoS is composed of two matrices, a positive-
LoS matrix containing entries for pairs of faces that are in
light-of-sight; and a negetive-LoS matrix containing entries
for pairs of faces that are not in line-of-sight. Notice that
the positive and negative matrices do not complement each
other, because each contain only a small subset of all pos-
sible pairs. The combination of positive and negative LoS
matrices provides a quick estimate of the convexity measure
from a sparse set of pairs in line-of-sight and not in line-of-
sight pairs.

We sub-sample the LoS by checking only a small number

(r) of lines-of-sight per each face/splat. The lines-of-sight
are sampled by shooting a fixed array of r rays from the cen-
ter of each face/splat, oriented around the surface normal.
The rays are arranged uniformly inside a cone with an open-
ing angle of 60 degrees. This method is very similar to the
one used by Shapira et. al in [?] to calculate the Shape Diam-
eter Function. Each ray hits one opposite face (unless there’s
a hole in the shape in that direction), contributing two (sym-
metric) entries to the positive-LoS matrix. The faces that lay
behind and are occluded by the face that was hit, are not in
line-of-sight with the source ray; thus contribute entries to
the negative-LoS matrix. In our experiments we use r = 30
rays.

According to [?], the running-time of this procedure
might be as low as a few seconds for a shape of 30,000 face
with r = 30, when computed with GPU acceleration. In our
implementation, we use only Matlab operations, thus run-
ning time is at least one order longer. The sparsity of the LoS
matrix also speeds up spectral clustering calculation, and al-
lows scalability. Calculation of the sparse LoS matrices takes
about 200 seconds for a 10,000 face shape with r = 30, and
spectral clustering about 50 seconds, on a 2.0Ghz computer
with 2GB RAM.

The fixed value of parameter r was determined by ex-
ploring results for different values on a small set of shapes.
We experimented with values in the range of [10,200]; since
higher values would yield unreasonable running time. Re-
sults are quite “unstable” for r = 10 and become stable for
values greater than about 20. We have chosen r = 30 as a
compromise between high stability and low running time.
We have also compared a few results against those obtained
with a full LoS matrix (which takes hours to compute for rel-
atively simple shapes); but did not notice significant artefacts
introduced by our approximation.

Finally, to produce a visually aesthetic result on mesh, the
boundaries between parts should be smooth and seam lines
are encouraged to run along concave regions. We use a con-
ventional graph cut method applied to the KNN graph of the
point set that minimizes an energy functional with two cost
terms:

E(l) = ∑
x

Data(x, l(x))+ λ∑
l(x)6=l(y)
(x,y)∈E

Smooth(x,y) (4)

The data terms aims at a faithful labeling of the graph ver-
tices and the smoothness term strives at employing certain
conditions on edges dividing different labels. In our setting
the data term is built upon a Gaussian kernel of the Euclidean
distance from points to cluster centers in the spectral embed-
ded space: where x is a point in the embedding, l is the as-
signed label for x, x̂l is the center of the cluster associated
with label l and σ

2
l is the intra cluster variance. The smooth-

ness term rewards boundaries along edges with negative di-
hedral angles.

As with any clustering method, automatically determining
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the number of weakly convex parts in the decomposition is a
difficult task. To control the number of weakly convex parts,
we simply exhaustively search for the best decomposition
into 2 to 13 parts.

We evaluate the quality of a decomposition of shape S into
S1, ...,Sk by:

ψ(S1, ...,Sk) =
1
|S|2 ∑

i
(|LoS(Si)|+α|LoS(Si,Si)|), (5)

where |LoS(Si)| is the count of intra visible LoS pairs in Si;
|LoS(Si,Si)| is the count of inter occluded pairs, where one
point is in Si and the other in another part; α controls the
intra/inter factor. In all our experiment we used α = 1.

The ψ function in Equation 5 is maximized by increasing
visibility within a part Si and decreasing visibility between
different parts. The weight α allows controlling the balance
between cluster intra visibility and cluster inter lack of vis-
ibility. Measuring the partition with ψ avoids rewarding for
over-segmentation. On the other hand, parts with high ψ are
further partitioned.

6. Evaluation and Discussion

Quantitative Evaluation. We tested our method on various
objects as shown in Figures 10 and 15. An approximate con-
vex decomposition does not have ground truth to serve as
means to evaluate the method with a quantitative measure,
nor benchmarks like those used for evaluating segmentation
techniques. We do not present the reduction of the convexity
ranks since such reduction is trivial and any naive decom-
positions also leads to a reduction. Instead, we evaluate the
decomposition using the ψ function defined in 5.

As we show, our method succeeds in decomposing the
shapes into parts with a high convexity rank and low visi-
bility between parts. See Figure 10 where we display under
each shape the ψ value of the input shape as a single part
(which is equivalent to the shape’s convexity rank), and the
ψ value of the resulting decomposition.

Qualitative Comparison. To qualitatively evaluate the per-
formance of our method, we compare it to other approaches.
Alternative methods produce results with different qualities
since they use different measures of convexity. A common
convexity measure used in other methods (e.g., [AMSF08]†)
is:

Convexity(S) =
vol(S)

vol(CH(S))
,

where vol() measures the volume of a 3D part, or the area of
a 2D part, and CH(S) is the convex hull of S. We argue that

† [AMSF08] actually use a scaled version of this measure, however
the discussion still holds

this measure is less intuitive and less sensitive to concavities.
An illustrative example is shown in Figure 12. As can be
seen, using the above measure, the spoon is about as convex
as the fork, which is counter intuitive. Our convexity rank, on
the other hand, provides a measure indicating that the spoon
is significantly more convex than the fork. These examles
illustrate the strength of using a fine-grained measure, like
visibility to rank the convixity.

Lien and Amato [LA06] and Ren et al. [RYLL11] made a
similar observation and suggested a different concavity mea-
sure. They measured the maximal outer route from a surface
point to the convex hull of the shape. This measure is lo-
cal and does not take a global view as shown in Figure 13.
Our measure is global and intuitive. To stress this point, we
display in Figure 10 a decomposition of a vase, where its
non-convex body is split into two more convex parts. Note
that the split does not occur at a sharp feature, nor at a par-
ticularly concave region.

Furthermore, a notable property of our method is demon-
strated in Figure 11. Previous approximate convex decompo-
sition methods attempt to find a disjoint partitioning of the
inner volumes of the shapes. Our method attempts to find a
disjoint decomposition of the shape’s surface, which often
provides a more intuitive decomposition.

Figure 11: Unlike other methods, our method can decom-
pose a shape into parts that are overlapping in volume, but
with disjoint surfaces.

Limitations. As shown in Figure 13(c), our convexity mea-
sure, which is global, is not sensitive to sharp local and small
concavities in a large convex context. For example, fingers of
a human; they typically will not be segmented. Additionally,
our method does not handle containers well. The inherent
lack of inner visibility makes it hard to perform a meaning-
ful convex decomposition. The container parallel sheets are
treated independently by the graph-cut, which leads to in-
compatibility across the parallel surfaces (see Figure 14).

Conclusions. In summary, we have presented a spectral
method for decomposing a shape into weakly convex parts.
The decomposition has a simple formulation as it is merely
a spectral clustering of the all-pairs (inner) visibility. The

c© 2013 The Author(s)
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Figure 10: For each shape we display its ψ before and after decomposition. Notice the lower left shape where our method
splits the non-convex body of the vase into two weakly convex regions. Note that the split occurs at a featureless point, and not
at a sharp feature or a particularly concave region.

Figure 12: Convexity Measures. In the top row is the shape
vs. convex hull area ratio. On the bottom is our convexity
rank.

clusters then represent regions with high mutual visibility, or
in other words, weakly convex parts. This approach eludes
complex geometric algorithms by using efficient spectral
clustering tools.

The simplicity of the formulation allows good control
over the decomposition where the convexity rank of the parts
can be refined. Furthermore, the all-pair visibility does not
require strong assumptions about the input shape and the

Figure 13: In both (a) and (b) the maximal route from a
surface point to the convex hull of the shape is the same, but
shape (a) seems more concave than shape (b). In shape (c)
however, our measure gives a high convexity value while the
alternative measure relates to the obvious sharp concavity
better.

spectral convex decomposition method can handle shapes
that are incomplete and possibly represented as a point
cloud.

In the future we would like, as an immediate application
of a weakly convex decomposition, to approximate a shape
with a set of bounding boxes. Enclosing each weakly con-
vex part with a minimal bounding box will lead to a tight
and yet conservative bounding volume. We would also like
to study the gap between shape segmentation and convex de-
composition. We believe that the latter can form a good ini-
tial decomposition to improve segmentation methods, espe-

c© 2013 The Author(s)
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cially for manmade objects. We are also interested in study-
ing the problem of concave parts, where instead of analyzing
the inner visibility of the part, we consider the complement,
and detect convex regions in the complement.

Figure 14: Handling Sheets of parallel surfaces. In some
cases the method may produce unappealing results as shown
in (a) and (b). There is no compatibility between the upper
and lower side of the table.
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Figure 15: A gallery of spectral convex decomposition.
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